Reg. No. :
Name : \qquad

Sixth Semester B.Sc. Degree Examination, April 2023 First Degree Programme under CBCSS
 Mathematics
 Core Course XIII
 MM 1645 : INTEGRAL TRANSFORMS
 (2018 Admission onwards)

Time : 3 Hours
Max. Marks : 80
PART - A
All the first ten questions are compulsory. They carry 1 mark each.

1. Find the Laplace transform of $f(t)=e^{-3 t}$.
2. If $L[f(t)]=F(s)$, then $L\left\{\int_{0} t f(u) d u\right\}=$
3. Find the inverse Laplace transform of $\frac{1}{s^{2}+4}$.
4. Define unit step function.
5. Write $\left.L^{\{ } f^{*}(t)\right\}$ in terms of $L(f) ; f(0)$ and $f^{\prime}(0)$.
6. Give an example of a periodic function which is neither odd nor even.
7. Define Fourier cosine transform of a function $f(t)$.
8. What is the standard form of Fourier series for an even function?
9. Find the fundamental period of the function $\cos (n x)$.
10. If $f(x)$ has period p then find the period of $f(2 x)$.

$$
\text { (10 } \times 1=10 \text { Marks })
$$

PART - B

Answer any eight questions. Each question carries 2 marks.
11. Find the Laplace transform of $f(t)=t \sin 2 t$.
12. Find $L\left[e^{-3 t} \sin 3 t\right]$.
13. Evaluate $L^{-1}\left[\frac{3}{(s+2)^{4}}\right]$.
14. Find $L^{-1}\left(\frac{1}{(s+2)(s+3)}\right)$.
15. Solve the differential equation $y^{n}-y=t, y(0)=1, y^{\prime}(0)=1$.
16. Define convolution of two functions and find the convolution of 1 and -1 .
17. Is $L[f(t)+g(t)]=L(f(t))+L[g(t)]$? Explain.
18. Find the Fourier series of $f(x)=x$ for $0<x<2 \pi$.
19. Find the Fourier sine series for the function $f(x)=\pi-x$ in $0<x<\pi$.
20. Find the Fourier cosine transform of the function $f(x)=\left\{\begin{array}{cc}k, & 0<x<\pi \\ 0, & x>\pi\end{array}\right.$.
21. Derive the Fourier transform of $f^{\prime}(x)$, the derivative of $f(x)$.
22. Check whether the following functions are odd or even
(a) $\frac{x}{x^{2}+1}$
(b) $x^{3} \tan \pi x$.
($8 \times 2=16$ Marks)
PART - C

Answer any six questions. Each question carries 4 marks.
23. Find the Laplace transform of the function $f(t)=\left\{\begin{array}{ll}t & t \geq 3 \\ 0 & t<3\end{array}\right.$.
24. Find the inverse transform of $(3 s+1) /(s-1)\left(s^{2}+1\right)$.
25. Solve the equation $y^{\prime \prime}+3 y^{\prime}+2 y=\delta(t-1), y(0)=0, y^{\prime}(0)=0$.
26. Find the Laplace transform of $e^{-4 t} \int_{0}^{t} t \sin 3 t d t$.
27. Find the Laplace transform of $t^{2} e^{-3 t} \sin 2 t$.
28. Find the inverse Laplace transform of $\frac{2\left(e^{-s}-e^{-3 s}\right)}{s^{2}-4}$.
29. Find the inverse of $\frac{5 s+3}{(s-1)\left(s^{2}+2 s+5\right)}$.
30. Find the Fourier series for $f(x)=|x|$ from $x=-\pi<x<\pi$ and deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots=\frac{\pi^{2}}{8}$.
31. Using Fourier sine integral, Show that

$$
\int_{0}^{\infty} \frac{1-\cos \pi w}{w} \sin x w d w=\left\{\begin{array}{cc}
\frac{\pi}{2} & \text { if } 0<x<\pi \\
0 & \text { if } x>\pi
\end{array}\right.
$$

PART - D

Answer any two questions. Each question carries 15 marks.
32. (a) State and prove convolution theorem of Laplace transforms
(b) Use convolution theorem to find the inverse Laplace transform of $\frac{1}{s^{2}(s-a)}$.
33. Find the Fourier series of the periodic function $f(x)$ of period 2 , where $f(x)=\pi x$ in $0 \leq x \leq 2$ and deduce that $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots=\frac{\pi}{4}$.
34. (a) Represent $f(x)=\left\{\begin{array}{cc}\sin x, & 0<x<\pi \\ 0, & x>\pi\end{array}\right.$ as Fourier cosine integral
(b) Find the Fourier integral of $f(x)=\left\{\begin{array}{cc}\pi-x & \text { if } 0<x<\pi \\ 0, & \text { otherwise }\end{array}\right.$
35. (a) Find the Fourier transform of $f(x)=e^{-\frac{x^{2}}{2}}$. What is your inference?
(b) Find the Fourier transform of $f(x)=\left\{\begin{array}{cc}|x| & \text { if }-1<x<1 \\ 0, & \text { otherwise }\end{array}\right.$

Reg. No. : \qquad
Name : \qquad

Sixth Semester B.Sc. Degree Examination, April 2023

First Degree Programme under CBCSS

Mathematics

Core Course XII

MM 1644 : LINEAR ALGEBRA

(2018 Admission onwards)

Time : 3 Hours
Max. Marks : 80

SECTION - A

Answer all questions. Each question carries 1 mark.

1. Write the given system of equations in column form
$5 x+20 y=80$
$-x+4 y=-64$
2. Find two points on the line of intersection of the three planes $t=0, z=0$ and $x+y+z+t=1$ in four dimensional space.
3. Define a symmetric matrix.
4. Define subspace of a vector space.
5. The columns of a matrix A and n vectors from R^{m}. If they are linearly independent, what is the rank of A ?
6. Write the reflexion matrix that transforms (x, y) to (y, x).
7. If a 3 by 3 matrix has $\operatorname{det} A=\frac{-1}{2}$, find $\operatorname{det}\left(A^{-1}\right)$.
8. State whether true or false: The determinant of $S^{-1} A S$ equals the determinant of A.
9. If $\lambda \neq 0$ is an eigen value of A and x is its eigen vector, then show that x is also an eigen vector of A^{-1}.
10. Define a transition matrix.
(10×1 = 10 Marks)

SECTION - B

Answer any eight questions. Each question carries 2 marks.
11. Write down the upper triangular system of equations. Also find the pivots
$2 x+3 y=1$
$10 x+9 y=11$
12. Give 2 by 2 matrices A and B such that $A B=0$, although no entries of A or B are zero.
13. Describe the null space of $A=\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]$.
14. Describe the subspace of R^{3} spanned by the two vectors (1, 1, -1) and $(-1,-1,1)$.
15. Check whether the transformation $T: R^{3} \rightarrow R^{3}$ defined by $T\left(V_{1}, V_{2}, V_{3}\right)=$ $\left(V_{2}, V_{3}, 0\right)$ is linear.
16. Using the big formula, compute $\operatorname{det} \mathrm{A}$ from 6 terms. Are rows independent?
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 4 & 4 \\ 5 & 6 & 7\end{array}\right]$
17. The corners of a triangle are $(2,1),(3,4)$ and $(0,5)$. What is the area?
18. Suppose the permutation P takes $(1,2,3,4,5)$ to $(5,4,1,2,3)$. What does P^{-1} do to (1,2,3,4,5).
19. Show that the eigen value of A equals the eigen value of A^{\top}.
20. Factor $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ into $S \wedge S^{-1}$.
21. Compute A^{3} for the Fibonacci matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.
22. Prove that two eigen vectors of a Hermitian matrix, if they come from different eigen values one orthogonal to one another.
($8 \times 2=16$ Marks)

SECTION - C

Answer any six questions. Each question carries 4 marks.
23. For which numbers ' a ' does the elimination break down
(i) Permanently (ii) Temporarily

$$
a x+3 y=-3
$$

$$
4 x+6 y=6
$$

Solve for x and y after fixing the second break down by a row exchange.
24. Find all matrices $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ that satisfy $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] A$.
25. Reduce to echelon form $\left[\begin{array}{ccc}0 & 0 & 2 \\ 1 & -1 & 1 \\ -1 & 1 & -4\end{array}\right]$.
26. Find the range and kernel of $T\left(V_{1}, V_{2}\right)=\left(V_{1} V_{1}+V_{2}\right)$.
27. Find x, y and z by Cramer's rule:

$$
\begin{aligned}
& 2 x+y=1 \\
& x+2 y+z=70 \\
& y+2 z=0
\end{aligned}
$$

28. Define orthogonal matrix. Prove that if A is an orthogonal matrix, then $\operatorname{det} A= \pm 1$.
29. Find the eigen values and eigen vectors of $A=\left[\begin{array}{lll}0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0\end{array}\right]$.
30. If $A=\left[\begin{array}{ll}4 & 3 \\ 1 & 2\end{array}\right]$, find A^{100} by diagonalising it.
31. Compute $A^{H} A$ and $A A^{H}$ for $A=\left[\begin{array}{lll}i & 1 & i \\ 1 & i & i\end{array}\right]$.

SECTION - D

Answer any two questions. Each question carries 15 marks.
32. (a) Compute the symmetric $L D L^{\top}$ factorisation of $A=\left[\begin{array}{ccc}1 & 3 & 5 \\ 3 & 12 & 18 \\ 5 & 18 & 30\end{array}\right]$.
(b) Use the Gauss-Jordan method to invert $\left[\begin{array}{ccc}1 & 2 & 1 \\ 3 & -2 & -4 \\ 2 & 3 & -1\end{array}\right]$.
33. (a) Find the value of α that makes the system solvable and find the solution $x+y+z=1$
$2 x-y+2 z=1$
$x+2 y+z=\alpha$
(b) Find the dimensions of the column space and raw space of $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0\end{array}\right]$.
34. (a) Find the dimension and a basis for the four fundamental subspaces for $u=\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
(b) Find the 4 by 4 matrix A that represents a right shift : $\left(x_{1}, x_{2}, x_{3}\right)$ is transformed to ($0, x_{1}, x_{2}, x_{3}$). Also find the left shift matrix B from R^{4} back to R^{3}, transforming $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ to $\left(x_{2}, x_{3}, x_{4}\right)$.
35. (a) Test the cayley-Hamilton theorem on $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$.
(b) Find a diagonal matrix M so that $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ is similar to $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.

Reg. No.: \qquad
Name : \qquad

Sixth Semester B.Sc. Degree Examination, April 2023
 First Degree Programme under CBCSS
 Mathematics
 Core Course XI
 MM 1643 : ABSTRACT ALGEBRA-RING THEORY (2018 Admission Onwards)

Time : 3 Hours
Max. Marks : 80

SECTION - A

Answer all questions. Each carries 1 mark.

1. Give an example of commutative ring with zero divisors.
2. Which are units of Z_{5} ?
3. What is the characteristic of $n Z$?
4. Find the number of elements in the factor ring $\frac{2 z}{8 z}$.
5. State factor theorem.
6. Is the ring $2 z$ isomorphic to the ring $4 z$?
7. Define a primitive polynomial.
8. Define a unique factorisation domain.
9. Find the norm of $1+\sqrt{-5}$.
10. State whether true or false: Every Euclidean domain is a UFD.

$$
\text { SECTION - B } \quad(10 \times 1=10 \text { Marks })
$$

Answer any eight questions. Each carries $\mathbf{2}$ marks.
11. Prove that $a(-b)=(-a) b=-(a b)$ in a ring R.
12. Show that if a and b are idempotents in a commutative ring, then $a b$ is also idempotent.
13. Prove that the ideal $\left\langle x^{2}+1>\right.$ is not prime in $z_{2}[x]$.
14. Define a principal ideal domain. Give an example.
15. Find the kernel of the ring homomorphism from $R[x]$ to R defined by $f(x) \rightarrow f(1)$.
16. Is the field of real numbers is ring isomorphic to the field of complex numbers? Justify your answer.
17. Show that the polynomial $2 x+1$ in $Z_{4}[x]$ has a multiplicative inverse in $Z_{4}[x]$.
18. Construct a field of 9 elements.
19. Prove that every subring of Z is of the form $n Z$ for some $n \in Z$.
20. Define associates and irreducibles in an integral domain.
21. Suppose that a and b belong to an integral domain, $b \neq 0$ and a is not a unit. Show that $\langle a b\rangle$ is a proper subset of $\langle b\rangle$.
22. Let $d<-1$ be an integer, that is not divisible by the square of a prime. Prove that the only units of $Z(\sqrt{d})$ are ± 1.

$$
(8 \times 2=16 \text { Marks })
$$

SECTION - C

Answer any six questions. Each question carries 4 marks.
23. Prove that the set $\left\{\left.\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right] \right\rvert\, a, b \in Z\right\}$ is a subring of the ring of all 2×2 matrices over Z.
24. Find all solutions of the equation $x^{2}-5 x+6=0$ in Z_{12}.
25. Show that an intersection of subfields of a field F is again a sub field of F.
26. Let φ be a ring homomorphism from a ring R to a ring S. If B is an ideal in S, then prove that $\phi^{-1}(B)=\{r \in R \mid \phi(r) \in B\}$ is an ideal of R.
27. Let R be a ring with unity 1 . Then show that the mapping $\phi: Z \rightarrow R$ by $\phi(m)=m .1$ is a ring homomorphism.
28. Show that if D is an integral domain, then $D[x]$ is also an integral domain.
29. Show that $1+\sqrt{-3}$ is irreducible in $Z[\sqrt{-3}]$.
30. Show that the ring of Gaussian integers $Z[i]=\{a+b i \mid a, b \in Z\}$ is a Euclidean domain.
31. In $Z[\sqrt{-5}]$, show that 21 doesn't factor uniquely as a product of irreducibles.

SECTION - D

Answer any two questions. Each carries 15 marks.
32. (a) Prove that a finite integral domain is a field.
(b) Prove that the characteristic of an integral domain is zero or prime.
33. Let D be an integral domain. Then prove that there exist a field F that contains a subring isomorphic to D.
34. (a) State and prove Gauss's lemma.
(b) Let $f(x) \in Z[x]$. Prove that if $f(x)$ is reducible over Q, then it is reducible over Z.
35. Prove that in a PID, an element is irreducible if and only if it is prime.

$$
(2 \times 15=30 \text { Marks })
$$

Reg. No. : \qquad
Name : \qquad

Sixth Semester B.Sc. Degree Examination, April 2023
 First Degree Programme under CBCSS Mathematics
 Core Course - \mathbf{X}
 MM 1642 : COMPLEX ANALYSIS - II
 (2018 Admission onwards)

Time: 3 Hours
Max. Marks : 80

SECTION - A

Answer all questions. Each question carries 1 mark.

1. Define convergence of series of complex numbers.
2. Define Uniform Convergence of a sequence of functions.
3. Define a power series.
4. Define a simple pole.
5. Define residue of $f(z)$ at z_{0}.
6. Define Improper integral over $[0, \infty]$ of a continuous non negative function $f(x)$.
7. Define the Cauchy principal value of f over $(-\infty, \infty)$
8. What do you mean by local property of a mapping.
Ξ Define open mapping property.
9. Define the mapping: Translation
(10 $\times 1=10$ Marks)
SECTION - B

Answer any eight questions. Each question carries $\mathbf{2}$ marks.
11. Prove that $\sum_{j=1}^{\infty} c^{j}$ converges to $\frac{1}{1-c}$ for $|c|<1$.
12. Find the Maclaurin series for $\sin z$.
13. Define Cauchy Product of two Taylor series.
14. State M test for uniform convergence.
15. State the necessary and sufficient condition for an analytic function to have a zero of order m at z_{0}.
16. Define the radius on convergence of a power series.
17. If $f(z)=\frac{P(z)}{Q(z)}$, where $P(z)$ and $Q(z)$ are analytical at z_{0} and Q has a simple pole at z_{0}, while $P\left(z_{0}\right) \neq 0$, derive the formula for $\operatorname{Res}\left(f ; z_{0}\right)$
18. Find the residue at $z=0$ of $f(z)=z^{2} \sin \left(\frac{1}{z}\right)$ using Laurent series.
19. Evaluate p.v. $\int_{-\infty}^{\infty} x d x$.
20. Show that e^{z} is locally one to one but not globally.
21. State the Riemann Mapping Theorem.
22. Define the mappings: Rotation and Magnification.

$$
(8 \times 2=16 \text { Marks })
$$

SECTION - C

Answer any six questions. Each question carries 4 marks.
23. State the comparison test and show that $\sum_{j=1}^{x} \frac{3+2 i}{(j+1)^{j}}$ converges.
24. Find the Taylor series of $\log z$ around $z=1$.
25. Prove that the uniform limit of a sequence of continuous functions defined on a simply connected domain is also continuous.
26. Classify the zeros and singularities of $\sin \left(1-\frac{1}{z}\right)$.
27. Find the residues at each singularity of $f(z)=\cot z$.
28. Prove that, if $f(z)$ has a pole of order m at z_{0}, then
$\operatorname{Re} s\left(f: z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]$.
29. Suppose that $f(t)$ and $M(t)$ are continuous function defined on $[a, b]$, with f complex and M real valued. Prove that if $|f(t)| \leq M(t)$ on this interval, then $\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b} M(t) d t$.
30. Prove that if $f(z)$ is analytic at z_{0}, and $f^{\prime}\left(z_{0}\right) \neq 0$ then $f(z)$ is conformal at z_{0}.
31. Define a Mobius transformation and show that the inverse of a Mobius transformation is another Mobius Transformation

Answer any two questions. Each question carries 15 marks.
32. Prove that if $f(z)$ is analytic in the disk $\left|z-z_{0}\right|<R$, then there exists a Taylor series which converges to $f(z)$ for all z in this disk.
33. (a) Expand $e^{(y / 2)}$ as a Laurent series about $z=0$.
(b) Find the Laurent Series for $f(z)=\frac{z^{2}-2 z+3}{z-2}$ in the region $|z-1|>1$.
34. State and prove Cauchy Residue Theorem. Using Cauchy Residue Theorem evaluate the integral of $f(z)=\frac{1-2 z}{z(z-1)(z-2)}$ over the circle $|z|=2$.
35. Evaluate $\int_{0}^{2 \pi} \frac{\sin ^{2} \theta}{5+4 \cos \theta} d \theta$.

$$
\text { (} 2 \times 15=30 \text { Marks })
$$

Reg. No. : \qquad
Name : \qquad

Sixth Semester B.Sc. Degree Examination, April 2023
 First Degree Programme under CBCSS
 Mathematics
 Core Course IX
 MM 1641 : REAL ANALYSIS - II
 (2018 Admission Onwards)

Time: 3 Hours
Max. Marks : 80

SECTION - A

All the first ten questions are compulsory. They carry 1 mark each.

1. Evaluate $\lim _{x \rightarrow 7 / 4} \frac{|x-2|}{x-2}$
2. State true or false: Every uniformly continuous function is continuous.
3. Determine the points of discontinuity of the greatest integer function.
4. State the mean value theorem.
5. Define a uniformly continuous function.
6. Define a differentiable function at a point.
7. Give an example of a real valued function which is discontinuous at every point of R.
8. Define upper integral of a function f.
9. When do you say that a bounded real function f is integrable on $[a, b]$?
10. State true or false: If $|f|$ is integrable on $[a, b]$ then f is also integrable on $[a, b]$.
(10×1 = 10 Marks)
SECTION - B

Answer any eight questions. Each question carries 2 marks.
11. Evaluate $\lim _{x \rightarrow 0} \frac{x^{2}}{|x|}$
12. Prove that the Dirichlet's function f defined on R by $f(x)=\left\{\begin{array}{l}1 \text { if } x \text { is irrrational } \\ -1 \text { if } x \text { is rational }\end{array}\right.$ is discontinuous at every point.
13. If $\mathrm{f}: A \rightarrow \mathrm{R}$ and $\mathrm{g}: A \rightarrow R$ are continuous at a point $c \in A$, show that $f(x)+g(x)$ is also continuous at C.
14. Is the function $f(x)=\frac{1}{x}$ uniformly continuous on (0,1$]$? Justify.
15. Prove that $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence for every Cauchy sequence $\left\{x_{n}\right\}$ in R where f is a uniformly continuous function.
16. If f is differentiable in (a, b) and $f^{\prime}(x) \leq 0$ for all $x \in(a, b)$, show that f is monotonically decreasing.
17. Show by an example that a bounded function in $[a, b]$ need not be continuous in [a,b].
18. If $\mathrm{f}: A \rightarrow R$ is differentiable at a point $c \subseteq A$, then f is continuous at c as well.
19. Find the value of δ for the function $f(x)=x^{2}+4 x+3$ to be uniformly continuous in the interval $[-1,1]$, given $\varepsilon=\frac{1}{10}$.
20. Check whether the following function is integrable over $[0,1]: f(x)=1$ if $x \in[0,1]$ and x is rational and $f(x)=0$ if $x \in[0,1]$ and x is irrational.
21. Show that $\int_{a}^{b} f d x \geq \int_{a}^{\bar{b}} f d x$.
22. Show that if f and g are bounded and integrable on $[a, b]$, such that $f \geq g$, then $\int_{a}^{b} f d x \geq \int_{a}^{b} g d x$.

SECTION - C

Answer any six questions. Each question carries 4 marks.
23. Test the continuity of the function at $x=0 f(x)=\left\{\begin{array}{c}x \sin \frac{1}{x}, \text { for } x \neq 0 \\ 0, \text { for } x=0\end{array}\right.$
24. Explain Lipschitz functions with the geometrical interpretation.
25. Show that a uniformly continuous function preserves Cauchy sequences.
26. Suppose f is a real differentiable function on $[a, b]$ and suppose $f^{\prime}(a)<\lambda<f^{\prime}(b)$. Prove that there is a point $x \in(a, b)$ such that $f^{\prime}(x)=\lambda$.
27. State and prove chain rule of differentiation.
28. State and prove Darboux's theorem.
29. Prove that, if f is monotonic in [a,b], it is integrable in $[a, b]$.
30. If f and g are integrable in $[a, b]$ then show that $f g$ is also integrable in $[a, b]$.
31. Show that the Dirichlet's function $g(x)=\left\{\begin{array}{c}1 \text { for } x \text { rational } \\ 0 \text { for } x \text { irrational }\end{array}\right.$ is not integrable.

$$
(6 \times 4=24 \text { Marks })
$$

SECTION - D

Answer any two questions. Each question carries 15 marks.
32. Let $\mathrm{f}: ~ A \rightarrow R$ be continuous on A. If $K \subseteq A$ is compact, then prove that $f(K)$ is compact as well.
33. State and prove Intermediate value theorem. Is the converse true? Justify your answer.
34. Prove that a bounded function f is integrable on $[a, b]$ if and only if for every $\varepsilon>0$ there exists a partition P such that $\mathrm{U}(\mathrm{P}, \mathrm{f})-\mathrm{L}(\mathrm{P}, \mathrm{f})<\varepsilon$.
35. If f is bounded and integrable on $[\mathrm{a}, \mathrm{b}]$ and k is a number such that $|f(x)| \leq k$ for all $x \in[a, b]$. Prove that $\left|\int_{a}^{b} f d x\right| \leq k(b-a)$.

$$
(2 \times 15=30 \text { Marks })
$$

